$\mathrm{ClI}-\mathrm{Ru}-\mathrm{PI}$
$\mathrm{Cl} 1-\mathrm{Ru}-\mathrm{P} 2$
P1-Ru-P2
$\mathrm{Ru}-\mathrm{Pl}-\mathrm{Cl}$
$\mathrm{Ru}-\mathrm{PI}-\mathrm{C} 7$
$\mathrm{Ru}-\mathrm{Pl}-\mathrm{C} 30$
83.04 (3) 93.28 (3) 83.48 (2)
120.81 (9)
117.42 (9)
108.3.3(8)
$\mathrm{Ru}-\mathrm{P} 2-\mathrm{Cl} 3$
Ru-P2-C19
$\mathrm{Ru}-\mathrm{P} 2-\mathrm{C} 31$
$\mathrm{P} 1-\mathrm{C} 30-\mathrm{C} 31$
P2-C $31-\mathrm{C} 30$
116.3 (1)
119.82 (9)
109.73 (8)
107.1 (2)
$108.7(2)$

Lists of structure factors. anisotropic displacement parameters, H-atom coordinates, bond distances and angles involving non- H atoms and H 28 for (A), and bond distances and angles involving non-H atoms for (B) have been deposited with the IUCr (Reference: BK1121). Copies may be obtained through The Managing Editor. International Union of Crystallography, 5 Abbey Square. Chester CHI 2HU. England.

References

Ashby, G. S.. Bruce, M. I., Tomkins, I. B. \& Wallis. R. C. (1979). Aust. J. Chem. 32, 1003-1016.
Bruce, M. I.. Wong. F. S.. Skelton, B. W. \& White. A. H. (1981). J. Chem. Soc. Dalton Trans. pp. 1398-1405.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius. Delft. The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent Sustem for Cristal Structure Analysis. Enraf-Nonius. Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee. USA.
Joslin, F. L.. Mague, J. T. \& Roundhill. D. M. (1991). Organometallics, 10, 521-524.
Klerk-Engels. B. de, Groen, J. H.. Vrieze. K.. Möckel. A.. Lindner, E. \& Goubitz. K. (1992). Inorg. Chim. Acta. 195. 237-243.

Mague. J. T. \& Johnson. M. P. (1990). Organometalics. 9. 1254 1269.

Main, P., Fiske. S. J.. Hull. S. E.. Lessinger. L.. Germain. G.. Declercq. J.-P. \& Woolfson. M. M. (1982). MULTAN1I/82. A System of Computer Programs for the Automatic Solution of Crustal Structures from X-ray Diffraction Data. Universities of York. England. and Louvain. Belgium.
Morandini, F., Consiglio. G.. Straub. B.. Ciani, G. \& Sironi. A. (1983). J. Chem. Soc. Dalton Trans. pp. 2293-2298.

Suravajjala, S. \& Porter, L. C. (1993). Acta Crast. C49. 1456-1458.

Acta Cryst. (1996). C52, 1110-1112

Tricarbonyl $\left(\eta^{5}\right.$-2,4-dimethylpentadienyl)iron Tetrafluoroborate

A. L. Rheingold, ${ }^{\prime *}$ B B. S. Haggerty, ${ }^{\text {a }}$ H. MA ${ }^{b} \dagger$ and R. D. Ernst ${ }^{b *}$
"Department of Chemistry and Biochemistr?; University of Delaware, Newark, DE 19716, USA, and "Department of Chemistry: The Universiṭ of Utah, Salt Lake Ciṭ; UT 84112, USA

(Received I6 May 1994: accepted 23 October 1995)

Abstract

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{3}\right] \mathrm{BF}_{4}$, has been found to have the expected piano-stool geometry, except that the unique carbonyl ligand is tilted towards the

[^0]dienyl ligand by about 25° relative to the other carbonyl ligands. As in the case of the $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)\right]^{+}$ cation, a large difference appears to exist between the internal $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles [129.1(7) versus $122.1(6)^{\circ}$] of the open dienyl ligand.

Comment

An earlier structural study of $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)\right]$ BF_{4}, where $2,4-\mathrm{C}_{7} \mathrm{H}_{11}$ is 2,4 -dimethylpentadienyl (Ernst, Ma, Sergeson, Zahn \& Ziegler, 1987), revealed that the central $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angle of the $2,4-\mathrm{C}_{7} \mathrm{H}_{11}$ ligand was unusually large relative to the average of the interior angles about the methylated C -atom positions, i.e. $131.0(13)$ versus $118.2(10)^{\circ}$. It was not clear, however, whether this difference is due to the net charge of the complex or to the relatively high oxidation state $(+3)$ of the Co center. In an effort to distinguish between these two possibilities, we have undertaken the structure determination of $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{3}\right] \mathrm{BF}_{4}$, (I).

(I)

The structure of (I) is shown in Fig. 1. The C(5)-$\mathrm{C}(6)-\mathrm{C}(7)$ angle of $129.1(7)^{\circ}$ is significantly larger than the adjacent angles about the $\mathrm{C}(5)$ and $\mathrm{C}(7)$ atoms, which average 122.1 (6) ${ }^{\circ}$. While the magnitude of the difference is greater than the norm (Ernst, 1984), the statistical uncertainties are significant enough that a definite conclusion can not be reached. The rather large $J{ }^{13} \mathrm{C}-\mathrm{H}$ value of 187 Hz for the central C atom (cf. 180 Hz for the terminal CH_{2} groups and 134 Hz for the CH_{3} groups) is in agreement with the relatively high s-orbital contribution for that atom. Furthermore, it should be noted that in related systems, replacement of a carbonyl ligand by more strongly donating ligands leads to smaller differences: cf. $\left[\mathrm{Ru}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\mathrm{CO}_{2}\left(\mathrm{PEt}_{3}\right)\right]^{+}[127.6\right.$ (6) versus $\left.121.4(3)^{\circ}\right]$ and $\left[\mathrm{Ru}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}$ [124.8(11) versus 124.1 (19) ${ }^{\circ}$] (Newbound, Stahl, Ziegler \& Ernst, 1990). Thus, there could be a real dependence of the difference in angles on the electron density present in the complex.

Several other parameters are also worthy of mention. The methyl groups are tilted below the plane of the pentadienyl ligand [$\mathrm{C}(4)-\mathrm{C}(8)$] by an average of $8.7(5)^{\circ}$ (the sine of the tilt angle being the ratio of the deviation below the plane to the $\mathrm{C}-\mathrm{CH}_{3}$ bond length). Such a value is reasonable compared with values found in related complexes, as are the relative tilts of the carbonyl ligands below the Fe atom. These tilts can be defined

Fig. 1. The structure of the $\left[\left(\eta^{5}-2,4 \text {-dimethylpentadienyl) } \mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}\right.$ cation. including H -atom positions.
by the ratio of the deviation of the carbonyl C atoms below the Fe -atom location to the $\mathrm{Fe}-\mathrm{CO}$ bond length, according to which a much smaller tilt is observed for the unique carbonyl ligand $[\mathrm{C}(1)-\mathrm{O}(1)$] relative to the average of the other two [15.2(7) versus $40.2(8)^{\circ}$]. This leads to a noticeably small 'trans' $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(6)$ angle of $147.9(3)^{\circ}$. Finally, the $\mathrm{Fe}-\mathrm{C}$ bond lengths are longest for the terminal C atoms [average 2.177 (6) \AA], intermediate for the formally uncharged C atoms in the 2 and 4 positions $[C(5)$ and $C(7)$; average $2.145(6) \AA]$, and shortest for the central C atom [2.109(7) \AA]. A similar trend was observed for $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)\right]^{+}$, with $M-\mathrm{C}$ bond lengths shorter by ca0.1 \AA.

Four similar structures have been reported. A related neutral compound has been reported by Ma, Weber, Ziegler \& Ernst (1987), containing an I atom in place of one carbonyl group. The neutral dicarbonyl dimer has been reported by Gedridge, Patton, Ernst \& Ma (1987). Lumini, Cox, Roulet \& Schenk (1992) reported a neutral ruthenium analog, with an I atom in place of one carbonyl group, and Gatilov, Bokii \& Struchkov (1975) have reported an analog containing the heptamethylcyclohexadienyl ligand.

Experimental

Yellow crystals, grown from nitromethane/ether solution, were obtained from the reaction of either [$\mathrm{Fe}\left(\eta^{4}-2,4\right.$-dimethylpentadiene)(CO) $\left.)_{\mathrm{z}}\right]$ or $\left[\left(\eta^{4}: \eta^{4}-2,4,7,9\right.\right.$-tetramethyl $1,3,3,9-$ decatetraene $\left.) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]$ with $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}^{4} . \mathrm{BF}_{4}^{-}$(1 and 2 equivalents, respectively) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Ma, Weber, Ziegler \& Ernst, 1986).

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{3}\right] \mathrm{BF}_{4}$
Mo $K \alpha$ radiation
$M_{r}=321.85$
Monoclinic
$P 2_{\mathrm{I}} / c$
$a=11.095(3) \AA$
$b=10.098(3) \AA$
$c=11.607(4) \AA$
$\beta=91.34(3)^{\circ}$
$V=1300.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.64 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Nicolet $R 3 m$ diffractometer	$\theta_{\text {max }}=25^{\circ}$
ω scans	$h=-14 \rightarrow 14$
Absorption correction:	$k=0 \rightarrow 13$
\quad none	$l=0 \rightarrow 14$
2606 measured reflections	3 standard reflections
2544 independent reflections	monitored every 197
1435 observed reflections	reflections
$\quad\left[F_{o}>5 \sigma\left(F_{o}\right)\right]$	intensity decay: $<1 \%$
$R_{\mathrm{int}}=0.015$	

Refinement

Refinement on F
$R=0.0742$
$w R=0.0773$
$S=1.60$
1436 reflections
101 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0010 F_{o}^{2}\right]$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{\prime}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	U_{eq}
	x	$0.4884(1)$	$0.7085(1)$	$0.041(1)$
Fe	$0.2478(1)$	$0.6277(8)$	$0.6111(7)$	$0.056(3)$
$\mathrm{C}(1)$	$0.2465(9)$	$0.3884(9)$	$0.6347(7)$	$0.063(4)$
$\mathrm{C}(2)$	$0.3578(10)$	$0.394(3)$		
$\mathrm{C}(3)$	$0.1288(10)$	$0.3937(9)$	$0.6350(8)$	$0.061(3)$
$\mathrm{O}(1)$	$0.2458(8)$	$0.7159(6)$	$0.5523(6)$	$0.084(3)$
$\mathrm{O}(2)$	$0.4257(8)$	$0.3283(8)$	$0.5880(6)$	$0.095(3)$
$\mathrm{O}(3)$	$0.0565(8)$	$0.3377(8)$	$0.5880(6)$	$0.088(3)$
$\mathrm{C}(4)$	$0.3798(8)$	$0.6013(7)$	$0.8091(7)$	$0.051(3)$
$\mathrm{C}(5)$	$0.3678(8)$	$0.4738(8)$	$0.8563(6)$	$0.050(3)$
$\mathrm{C}(6)$	$0.2522(8)$	$0.4201(7)$	$0.8803(6)$	$0.044(3)$
$\mathrm{C}(7)$	$0.1399(9)$	$0.4732(8)$	$0.8582(6)$	$0.050(3)$
$\mathrm{C}(8)$	$0.1224(8)$	$0.6016(8)$	$0.8117(7)$	$0.051(3)$
$\mathrm{C}(9)$	$0.4748(9)$	$0.3837(9)$	$0.8691(8)$	$0.060(3)$
$\mathrm{C}(10)$	$0.0319(9)$	$0.3833(9)$	$0.8732(8)$	$0.061(3)$
$\mathrm{F}(1)$	$0.7508(6)$	$0.4033(5)$	$0.7181(6)$	$0.097(3)$
$\mathrm{F}(2)$	$0.7615(12)$	$0.6027(9)$	$0.7931(8)$	$0.184(7)$
$\mathrm{F}(3)$	$0.8336(11)$	$0.5699(10)$	$0.6292(10)$	$0.18 .5(6)$
$\mathrm{F}(4)$	$0.6454(10)$	$0.5705(11)$	$0.6527(11)$	$0.184(6)$
B	$0.7505(13)$	$0.5337(10)$	$0.6976(11)$	$0.065(4)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Fe}-\mathrm{C}(1)$	$1.805(8)$	$\mathrm{Fe}-\mathrm{C}(2)$	$1.815(10)$
$\mathrm{Fe}-\mathrm{C}(3)$	$1.825(10)$	$\mathrm{Fe}-\mathrm{C}(4)$	$2.174(8)$
$\mathrm{Fe}-\mathrm{C}(5)$	$2.152(8)$	$\mathrm{Fe}-\mathrm{C}(6)$	$2.109(7)$
$\mathrm{Fe}-\mathrm{C}(7)$	$2.138(8)$	$\mathrm{Fe}-\mathrm{C}(8)$	$2.180(9)$

$\mathrm{C}(4)-\mathrm{C}(5)$	$1.407(11)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.427(1.3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.375(1.3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.415(11)$
$\mathrm{C}(5)-\mathrm{C}(9)$	$1.500(13)$	$\mathrm{C}(7)-\mathrm{C}(10)$	$1.516(13)$
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$	$97.6(4)$	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(6)$	$105.3(3)$
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)$	$88.6(4)$	$\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(6)$	$70.3(3)$
$\mathrm{C}(2)-\mathrm{Fc}-\mathrm{C}(4)$	$95.4(4)$	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(8)$	$86.6(4)$
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(6)$	$147.9(3)$	$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(8)$	$93.9(4)$
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(6)$	$105.7(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.2(8)$
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(8)$	$174.9(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	$120.8(8)$
$\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(8)$	$82.0(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	$117.6(7)$
$\mathrm{C}(6)-\mathrm{Fe}-\mathrm{C}(8)$	$69.7(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$129.1(7)$
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)$	$96.9(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$122.9(8)$
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(4)$	$85.6(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	$117.4(7)$
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(4)$	$175.1(4)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	$119.4(8)$

Direct-methods (SOLV in SHELXTL; Sheldrick, 1985) structure solution and least-squares refinement were performed with all non- H atoms anisotropic and all H atoms calculated, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U=1.2 U$ of the attached C atom. The $\mathrm{H}-$ atom positions for the terminal CH_{2} groups were calculated by assuming $s p^{3}$ hybridization of the terminal C atoms ($c f$. Ernst, 1984). SHELXTL programs were used for all computations. As a result of 3 being close to 90°, the unit cell appeared pseudo-orthorhombic. Use of TRACER (Lawton \& Jacobson, 1965) and a check of reflections having odd indices for a cell whose axes were all doubled failed to indicate any higher symmetry. High displacement parameters were found for $F(2)$, $F(3)$ and $F(4)$, apparently due to rotational disorder about the $B-F(1)$ bond. The highest peaks in the difference Fourier map, however, were associated with the Fe atom, while peaks due to the F atoms were much less significant. As a result, no attempt was made to model the disorder more accurately. The somewhat high value of the R factor may, in part. reflect this disorder and the resulting lower rigidity of the lattice in general.

RDE thanks the National Science Foundation for generous support of this work.

Lists of structure factors. anisotropic displacement parameters. Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1014). Copies may be obtained through The Managing Editor. International Union of Crystallography. 5 Abbey Square, Chester CHI 2HU. England.

References

Ernst, R. D. (1984). Struct. Bonding (Berlin), 57. 1-53.
Ernst, R. D., Ma. H.. Sergeson. G., 7ahn. T. \& Ziegler. M. L. (1987). Organometallic's. 6. 848-853.
Gatilov, Yu. V., Bokii. N. G. \& Struchkov. Yu. T. (1975). Zh. Strukt. Khim. 16, 855-859.
Gedridge. R. W.. Patton, A. T., Ernst. R. D. \& Ma. H. (1987). J. Organomet. Chem. 331, 73-80.
Lawton, S. L. \& Jacobson, R. A. (1965). TRACER. United States Energy Commission. Report IS-1141. Iowa State University, USA.
Lumini. T.. Cox, D. N.. Roulet. R. \& Schenk. K. (1992). J. Organomet. Chem. 434, 363-385.
Ma. H., Weber. P., Zicgler. M. L. \& Ernst. R. D. (1986). Organometallics, 5, 2009-2013.
Ma, H., Weber, P., Ziegler. M. L. \& Ernst. R. D. (1987). Organometallics, 6, 854-860.
Newbound, T. D.. Stahl. L., Ziegler. M. L. \& Ernst. R. D. (1990). Organometallics. 9, 2962-2972.
Sheldrick, G. M. (1985). SHELXTL Users Manual. Revision 5.1. Nicolet XRD Corporation (Siemens), Madison. Wisconsin, USA.

[^0]: \dagger Present address: Department of Chemistry. Northwestern University. Xian (Shaanxi) 710069 . People's Republic of China.

